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Abstract. We investigate the effect of many-body correlations on the ground-state properties of
two coupled charged Bose quantum wires. The intrawire and interwire correlations are treated on
the same footing within the self-consistent mean-field theory of Singwi, Tosi, Land and Sjölander.
Static properties,viz., pair-correlation functions, local-field correction factors, screened interactions
and susceptibilities, are calculated for a range of wire spacingsd, wire radiiR0, and boson density
parametersrs . We find that the qualitative dependence of intrawire correlations onrs andR0
remains the same as found for an isolated wire, except that they become slightly weaker with the
decreasing spacingd. The interwire correlations, on the other hand, depend strongly ond and are
found to grow in magnitude with decreasingd. Further, we find no evidence for the existence of
a charge-density-wave ground state in the density range investigated, 16 rs 6 8, in the close
proximity of wires. A comparison with the similar studies on the coupled electron quantum wires
reveals that the charge-density-wave instability observed there may be an artifact of the neglect of
interwire correlation effects.

1. Introduction

There has been considerable recent interest in the study of layered charged quantum liquids of
both Fermi (electron or hole) and Bose types. The former, i.e., the layered electron systems,
can be fabricated at the interfaces of semiconductor heterostructures with fine control on the
system parameters due to the advent of nanotechnology such as computerized molecular beam
epitaxy. These electron systems also occur naturally in copper oxide planes present in ceramic
superconductors. The charged Bose systems, on the other hand, have not been so far realized
in the laboratory, but their study has received much recent theoretical [1, 2] importance mainly
due to their recognition as a possible model for understanding the phenomenon of high-Tc
superconductivity. Due to this close resemblance to superconductors and to the observation
of some unusual and interesting phenomena, the study of ground-state behaviour of both the
layered electron and charged Bose systems has emerged in itself as an important problem. A
variety of new features are shown to appear due entirely to the presence of other layers of
particles. The possibility of charge-density-wave (CDW) ground states and the enhancement
of Wigner crystallization density [3, 4] are among some typical examples.

Existence or non-existence of CDW instability in these structures has remained a
controversial issue in the last five years. Controversy arises mainly between the results of
Neilson and co-workers [3] and Kalman and co-workers [5]. The theoretical procedures of the
two groups differ in the method of treatment of many-body correlation effects. Very recently,
the difference in results for the electron system has been somewhat narrowed down with an
important contribution by Liuet al [6]. It is shown in agreement with the conclusions of
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Kalmanet al that the possibility of a CDW ground state diminishes with the proper treatment
of many-body correlations.

Parallel to the study of layered structures, the possibility of CDW ground states has also
been investigated in the double-quantum-wire electron system [7, 8]. Interestingly, in addition
to the finite-wavevector (q = 2qF ) instability, a long-wavelength instability has been shown
to appear at a wire separation lower than that for instability atq = 2qF . Here,qF is the one-
dimensional (1D) Fermi wavevector. In a quantum wire system, the particles are dynamically
free only along one spatial direction, while their motion is quantum mechanically restricted
in the remaining two transverse directions. With the existing technology, it is now possible
to fabricate these electron systems in the laboratory. In the present work, we investigate a
related problem of a coupled charged Bose quantum wire system consisting of two parallel
and identical quasi-1D (Q1D) charged Bose systems. Study of this system, when compared
with its Fermi counterpart, may be useful to disentangle the statistical and particle contributions
to the many-body correlations. Our first motive is to study the static structure of the system,
and secondly we intend to examine whether the transition to the CDW ground state occurs as
predicted in the electron system. A simple cylindrical model proposed by Gold and Ghazali [9]
in the context of electron wires is used where analytical expressions for the intra- and interwire
Coulomb potentials have been developed in Fourier space. We deal with the many-body
correlations among charged bosons within the self-consistent theory of Singwi, Tosi, Land
and Sj̈olander (STLS) [10] as generalized to the double-wire system. In the STLS approach
the effect of correlations is represented by static local-field corrections to the bare interactions
between the particles. The local fields are determined numerically in a self-consistent way. It
is worthwhile to mention here that the STLS theory has proved quite successful in treating the
correlation effects in 3D [11] and low-dimensional [12] systems provided the particle number
density is not too low and its importance beyond the random-phase approximation (RPA) has
recently been shown by us for the single charged Bose quantum wire [13]. Static properties we
wish to calculate include the static pair-correlation functions, local-field correction factors and
static screened interaction potentials. We also discuss in a systematic way the importance of
correlations in calculating these properties for a range of model parameters which comprise the
boson number density, the wire radius and the wire spacing. To highlight the role of interwire
correlations, results are compared with the lower-order calculation where these correlations
are simply neglected and with the results of an isolated single wire.

The paper is organized as follows. In section 2 we first present the wire model and then
outline the STLS theory for the double-wire system. Results and discussion are given in
section 3. Section 4 contains discussion on the possibility of a CDW ground state. In section 5
we make some concluding remarks.

2. Wire model and theoretical formalism

2.1. Wire model

We consider two parallel cylindrical quantum wires in thex-direction, with wire radiusR0

and with infinite potential barriers at|r| = R0. The wires are assumed to be separated by a
perpendicular distanced > 2R0. With these assumptions, the wavefunctions of particles in
two wires do not overlap and therefore, the tunnelling of particles between wires is not possible
in the present model. We take the density of bosonsn in each wire to be equal. The motion of
the carriers is free along the cylinder axis, while it is restricted perpendicular to the cylinder.
At absolute zero temperature, the bosons are assumed to be present in the condensate state.
The wire system is assumed to be embedded in a uniform neutralizing background. For the
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Coulomb interaction potentials between bosons, we use the analytical results developed by
Gold and Ghazali [7, 9]. The intra- and interwire potentials are given, respectively, as

V11(q) = e2

2ε0
f11(q) (1)

and

V12(q) = e2

2ε0
f12(q) (2)

wheref11(q) andf12(q) are the intra- and interwire form factors given, respectively, by

f11(q) = 144

(qR0)2

[
1

10
− 2

3(qR0)2
+

32

3(qR0)4
− 64

I3(qR0)K3(qR0)

(qR0)4

]
(3)

f12(q) = (96)2
[
I3(qR0)

(qR0)3

]2

K0(qd). (4)

In(x) andKn(x) are the modified Bessel functions of ordern. ε0 is the dielectric constant of
the background and we will useε0 = 1. In the long wavelength limit bothf11(q) andf12(q)

exhibit logarithmic divergence and the limiting results are given by

f11(q) = −4[ln(qR0/2) +C − 73/120 + O(q)] (5)

and

f12(q) = −4[ln(qd/2) +C + O(q)] . (6)

C = 0.577 is the Euler constant. These limiting results are useful while performing the
numerical calculations.

2.2. Theoretical formalism

Within the linear response framework, the density response function for the double-wire system
can be expressed in the form of a 2× 2 matrix given as[

χij (q, ω)
]−1 =

[
χ−1

1 (q, ω) −V12(q)(1−G12(q))

−V21(q)(1−G21(q)) χ−1
2 (q, ω)

]
(7)

whereχi (q, ω) (i = 1, 2) is the density response function for the single wire. In the STLS
approximation,χi(q, ω) is given by

χi(q, ω) = χ0
i (q, ω)

1− Vii(q) [1−Gii(q)] χ0
i (q, ω)

i = 1, 2 (8)

whereχ0
i (q, ω) is the response function for the noninteracting charged Bose system, and at

absolute zero it is given by

χ0
i (q, ω) =

2niεq[
(ω + iη)2 − ε2

q

] . (9)

εq = h̄2q2/2m is the free particle energy andη is a positive infinitesimal quantity. Asn1 = n2,
we haveχ0

1 (q, ω) = χ0
2 (q, ω). In equations (7) and (8),Gij (q) (i, j = 1, 2)are the static local-

field correction factors that account for the short-range Coulomb correlation effects. Within
the STLS approach the local fields are related to the static structure factorsSij (q) through the
expression

Gij (q) = −1

n

∫ ∞
−∞

dk

2π

kVij (k)

qVij (q)

[
Sij (q − k)− δij

]
. (10)
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The fluctuation-dissipation theorem relatesSij (q) to χij (q, ω) as

Sij (q) = − h̄

πn

∫ ∞
0

dωχij (q, iω) (11)

where the frequency integration is to be performed along the imaginary axis. In view of the
geometry of the system, we haveAij (q) = Aji(q), i = j = 1, 2, whereA may beS orG.
From equations (7), (10) and (11), it is apparent thatGij (q) is to be obtained numerically in a
self-consistent way.

3. Results and discussion

In the numerical calculations and the results presented (if otherwise mentioned) we choose a
system of units in which ¯h = 1 and lengths and energies are expressed, respectively, in units of
the Bohr atomic radius (a0) and the Rydberg(1 Rydberg= e2/(2a0)). The density of bosons
is described by a dimensionless parameterrs ; rs = 1/(2na0).

3.1. Static correlation functions

Equations (7), (10) and (11) are solved numerically for the intra- and interwire correlation
functions in a self-consistent way within a tolerance of 0.001%. For very thin and closely spaced
wires, it becomes extremely difficult to obtain the convergent solution. In these situations, we
employ a numerical procedure which makes use of local fields given by

Gij (q) = 1

2

[
Gm−1
ij (q) +Gm−2

ij (q)

2
+Gm

ij (q)

]
(12)

in themth iteration for the calculation ofSij (q). The same method is used for calculating
Gij (q) from Sij (q). In this way the convergent solutions are obtainable ford > 1.1(2R0)

whenR0 is small and, equivalently, ifrs is large. Results for the intra- and interwire structure
factorsS11(q) andS12(q) and their corresponding local fieldsG11(q) andG12(q) are plotted,
respectively, in figures 1 and 2 forrs = 1, 3, 5, 8 andR0 = 2. Forrs = 8, it becomes almost
impossible to obtain the accurate self-consistent solution ford < 4.45 and the curve forrs = 8
corresponds tod = 4.45, whiled = 4 for otherrs values. Solid and dashed lines represent,
respectively, the intra- and interwire quantities. The interwire structure factorS12(q) is about
an order of magnitude smaller thanS11(q) and remains negative in the range ofq-values of
interest. Relative dependence of intra- and interwire correlations onrs is more clear in the
behaviour of local fields (figure 2). It is apparent that bothG11(q) andG12(q) grow in strength
with decreasing density andG12(q) remains always comparatively weaker thanG11(q).

In figures 3 and 4 we show, respectively, the dependence of two local fields on the wire
spacingd and the wire sizeR0. Curves are labelled the same as in figure 1.G(q) for the
single wire is shown for comparison as a dash–dot line forrs = 8. It is interesting to note
that as the wires are brought closer the intrawire local field does not undergo any significant
change, while the interwire local field is affected strongly. In factG11(q) becomes somewhat
weaker as compared to the single wire and ford > 8 its behaviour does not differ considerably
fromG(q) of single wire. On the other hand, the interwire local field grows continuously with
decreasing spacing. In figure 3, our results are forrs = 8;R0 = 2 andd = 8, 6, 4.45. Figure 4
displays theR0-dependence of two local fields forrs = 5 andd = 4. G11(q) increases with
the decreasing wire size and if compared with itsd-dependence, theR0-dependence is rather
stronger.G12(q) depends uponR0 in the same manner asG11(q) except at smallq. For other
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Figure 1. The intrawire and interwire static structure
factors S11(q) (solid lines) andS12(q) (dashed lines)
for rs = 1, 3 and 5;d = 4 andrs = 8; d = 4.45.
R0 = 2 for all the curves. Labels denote the boson
number densityrs . Curves forS11(q) from bottom to
top correspond tors = 1, 3, 5 and 8, while forS12(q) the
sequence of curves is exactly the reverse ofS11(a).

Figure 2. The intrawire and interwire local-field factors
G11(q) (solid lines) andG12(a) (dashed lines). Model
parameters are the same as in figure 1. Labels denote the
boson number densityrs .

Figure 3. The intrawire and interwire local-field factors
G11(q) (solid lines) andG12(q) (dashed lines) forrs = 8
andR0 = 2. Curves forG11(q) from top to bottom
correspond tod = 8, 6 and 4.45, while forG12(q) the
sequence of curves is exactly the reverse ofG11(q). The
dash–dot line is the local-field factor of an isolated single
wire atrs = 8.

Figure 4. The intrawire and interwire local-field factors
G11(q) (solid lines) andG12(q) (dashed lines) forrs = 5
andd = 4. Curves for bothG11(q) andG12(q) from top
to bottom correspond toR0 = 0.5, 1 and 2.

rs-values, we have found qualitatively similard–R0-dependence. Thus, in the limit of narrow
and closely spaced wires, the interwire correlations become quite significant and are, therefore,
expected to influence the properties of the system containing their effect.
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In the long-wavelength limit, i.e.,q → 0,Gij (q) behaves approximately as

Gij (q) ≈ − 2rs
πfij (q)

∫ ∞
0

dk
[
Sij (k)− δij

] [
fij (k) + kf ′ij (k)

]
(13)

wheref ′ denotes the first-order derivative off w.r.t. k. It is interesting to note that the factor
[Gij (q)fij (q)] becomes merely independent ofq in the small-q limit and its value depends
only onrs , R0 andd. This limiting expression forGij (q), as we will see in section 4, plays a
crucial role in determining the possibility of existence of a long-wavelength CDW instability.

Results for the static pair-correlation functionsgij (x), which can be obtained from the
inverse Fourier transform ofSij (q) as

gij (x) = 1 +
2rs
π

∫ ∞
0

dk cos(kx)
[
Sij (k)− δij

]
(14)

are plotted in figure 5.gii(x) defines, as usual, the probability that the two particles in wirei

are separated by a relative distance ofx, while gij (x) represents the probability of finding a
particle in wirej at a distancex (parallel to the wirei) given that there is a particle present at
the origin (x = 0) in the wirei. Figures 5(a) and 5(b) contain, respectively, the dependence
of g11(x) andg12(x) on rs for fixedR0 andd. Forrs = 1, g12(x) is everywhere close to unity
and thereby implies weak interwire correlations. With increasingrs , however, the interwire
correlations are seen to become stronger. For example, byrs = 8, g12(x = 0) = 0.56.
Sincex = 0 for g12(x) corresponds to particles at the origin in both the wires separated by a
perpendicular distanced (d = 4.45 in this case) this value ofg12(0) defines strong interwire
correlations. Also shown for comparison in figure 5(a) isg(x) for the single wire forrs = 8 as
a dash–dot line. Bothg11(x) andg(x) are small and negative in the limit of small separation.
Since negativeg(x) corresponds to an unphysical situation it is not justified to use the STLS
approximation for treating short-range correlations forrs > 8 forR0 = 2. With decreasingR0,
the negative region ing11(x) appears already at lowrs-values. Thus, the domain of validity of
the STLS approximation is decided together byrs andR0.

In figures 5(c) and 5(d), we compare, respectively,g11(x) andg12(x) for rs = 8 and
R0 = 2 for the different wire spacings. As observed in the behaviour of local fields (figure 3)
the intrawire correlations show only weak dependence ond, while the interwire correlations
are strongly affected.

3.2. Static screened pair potentials

Proceeding in the way described by us for the double-layer system [4], the real space
expressions for the static screened intra- and interwire potentials are obtained, respectively, as

V sc11(x) =
1

π

∫ ∞
0

dk cos(kx)

{
f11(k) +

χ̇(k, 0)

1− χ̇2(k, 0)f 2
12(k)(1−G12(k))2

× [f 2
11(k) + f 2

12(k) + 2χ̇(k, 0)(1−G12(k))f11(k)f
2
12(k)

] }
(15)

and

V sc12(x) =
1

π

∫ ∞
0

dk cos(kx)

{
f12(k) +

χ̇(k, 0)

1− χ̇2(k, 0)f 2
12(k)(1−G12(k))2

× [2f11(k)f12(k) + χ̇(k, 0)(1−G12(k))f
3
12(k) + f 2

11(k)f12(k)
] }

(16)

where we have used the notation,e2χ1(k, 0) = e2χ2(k, 0) = χ̇(k, 0). Figures 6(a) and 6(b)
show, respectively, the dependence ofV sc11(x) andV sc12(x) onrs for fixedR0 andd (solid lines).
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(a) (b)

(c) (d)

Figure 5. The intrawire and interwire pair-correlation functionsg11(x) andg12(x). (a) g11(x);
(b) g12(x); system parameters are the same as in figure 1. Labels represent thers -parameter. The
dash–dot line isg(x) for the single wire atrs = 8. (c)g11(x); (d) g12(x); system parameters are
the same as in figure 3. Labels represent the wire spacingd. x is in units of(π/(4rsa0))

−1.

Unscreened potential (dotted line), screening in a single wire (dashed line) and the result of the
full RPA (G11(q) = G12(q) = 0) calculation (dash–dot line) are also plotted for comparison
for densityrs = 8. Note, that the screened potential, unlike its unscreened counterpart, exhibits
an attractive minimum with its magnitude being strongly enhanced over the full RPA by the
many-body correlations. For example, atrs = 8, the magnitude of the minimum inV sc11(x)

is about 20 times the result of the full RPA forR0 = 2 andd = 4.45. This large difference
in screening with the RPA indicates the extent of importance of the many-body correlations
beyond the RPA. The comparison with the single-wire curve shows that the magnitude of the
negative minimum is enhanced due to the presence of the second wire.

The dependence of the screened potentials on the separation between the wiresd is shown
in figures 6(c) and 6(d). Figures 6(e) and 6(f) illustrate the dependence of screening on the
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(a) (b)

(c) (d)

Figure 6. The intrawire and interwire static screened pair potentialsV sc11(x)andV sc12(x). (a)V sc11(x);
(b)V sc12(x); system parameters are the same as in figure 1. Labels represent thers -parameter. Dotted,
dashed and dash–dot curves represent, respectively, the unscreened potential, screening in a single
wire and the result of the full RPA atrs = 8. Curves forV sc11(x) from top to bottom correspond
to rs = 1, 3, 5 and 8. Curves forV12(x) from top to bottom correspond tors = 8, 5, 3 and 1.
(c) V sc11(x); (d) V sc12(x); system parameters are the same as in figure 3. Labels represent the wire
spacingd. (e)V sc11(c); (f) V sc12(x); system parameters the same as in figure 4. Labels represent the
wire radiusR0.

wire sizeR0. It can be noticed that decreasing the separation between wires, or making them
narrow, both lead to qualitatively similar effects on the screening. There is a build-up in
screening on decreasing bothd andR0 and a notable feature is that the screening is relatively
more sensitive toR0 than tod. Further, we have found for extremely narrow wires thatV sc11(x)

becomes strongly attractive. For example, the depth of the minimum inV sc11 is about−22 Ryd
for R0 = 0.1; rs = 1 andd = 0.3. In the RPA (G12(q) = 0) this magnitude reduces to
−10 Ryd. Setting bothG11(q) = G12(q) = 0 makes the minimum even shallower and it is
about−2.5 Ryd. Thus, we see that thoughV sc11 is already negative in the RPA, it is greatly
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(e) (f)

Figure 6. (Continued)

enhanced due to the presence of interwire correlations and this effect becomes even more
pronounced in the limit of narrow wires. In these situations, the system may become unstable
against the formation of the bound pairs of bosons in each wire.

4. Charge-density-wave instability

Charge-density-wave instability corresponds to the relative accumulation of charge at some
length scale, sayqc, in the system and if it happens, this can be checked by looking for
a divergence in the static (ω = 0) density susceptibility of the system. Diagonalizing
the static density response matrix, the diagonal components of the susceptibility defined by
χ(q) = −χ(q, 0), are obtained as

χ±(q) = 2/e2

rsq2 + f11(q)(1−G11(q))± f12(q)(1−G12(q))
. (17)

The wavevectorqc for the CDW ground state, if it exists, can be obtained by setting the
denominator of equation (15) equal to zero, i.e.,

rsq
2
c + f11(qc)(1−G11(qc))± f12(qc)(1−G12(qc)) = 0. (18)

Equation (18) cannot be solved analytically forqc. However, it becomes quite evident at
first instance that it is the out-of-phase component of susceptibility which can diverge and the
possibility for divergence will depend crucially on the behaviour of both the intra- and interwire
local fields. Further, the divergence can never occur in the full RPA(G11(q) = G12(q) = 0)
since equation (18) then can only be satisfied for imaginaryqc.

We attempt a numerical solution of equation (18) by using the self-consistent values of
G11(q) andG12(q). We confine our investigation to the density range 16 rs 6 8 and to
the range of wire spacing and size so that it remains physically justified to use the STLS
approximation for dealing with the correlations. Interestingly enough, we do not find any
acceptable solution of equation (18). This, in turn, rules out the possibility for the existence
of a CDW ground state in the two coupled charged Bose quantum wires.

At this stage, it becomes particularly important to compare our results with the coupled
electron quantum wire system. The two systems differ in the statistics obeyed by particles.
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The CDW instability for the two coupled electron wires was first investigated by Gold [7] and,
subsequently, by Wang and Ruden [8]. Gold predicted the instability in the long-wavelength
limit, while Wang and Ruden showed in addition to the long-wavelength instability the presence
of a CDW instability atq/qF = 2. Wang and Ruden treated the intrawire correlations within
the STLS approximation, while Gold used the Hubbard approximation. The effect of interwire
correlations was neglected in both the calculations. Further, it was assumed that the intrawire
correlations are not affected by the presence of the second wire. In our study, however, we have
included both the intra- and interwire correlations on the same footing within the completely
self-consistent STLS approach. The increasing importance of interwire correlations in the
close proximity of two wires has already been demonstrated in figure 3. It is important to
report here that usingG12(q) = 0 in equation (17) also gives a divergence inχ−(q) below a
critical separationdc parallel to what is observed for the coupled electron wires.dc is found to
depend upon bothrs andR0. Thus, we may arrive at the conclusion that the appearance of the
CDW instability is an artifact of the neglect of interwire correlation effects. We also believe
that the CDW instability predicted for the coupled electron wires may disappear, as in the case
of coupled electron layers [6], if the interwire correlations are treated properly.

Further, though it is not possible to solve equation (18) analytically forqc, we have
obtained an important relation for the existence of long-wavelength instability. Using the long-
wavelength results of form factors, equations (5) and (6), and of local fields, equation (13),
qc in the long-wavelength limit is obtained to be

qc =
{

1

rs

[
4 ln(R0/d)− 73/30 +(γ11− γ12)

]}1/2

(19)

whereγ11 = G11(q)f11(q) andγ12 = G12(q)f12(q). Bothγ11 andγ12 are independent ofq.
Now, for the long-wavelength instability to occur the term inside the square brackets in the
above equation must be greater than zero and in particular, for an instability atqc ≈ 0, we
must have

d

R0
= exp

{
1

4

[
(γ11− γ12)− 73/30

]}
. (20)

The above condition can only be checked numerically since the R.H.S. is a constant depending
uponrs, d andR0. We have found that this condition is not satisfied for the range of system
parameters where the use of the STLS approximation is reliable. We therefore also rule out the
possibility of the long-wavelength instability in a coupled charged Bose quantum wire system.
Relation (20) is equally valid for two coupled electron wires and, hence, can be used to check
the prediction of Gold for the existence of long-wavelength instability.

5. Conclusions

In conclusion, we have seen that the nature of the boson ground state is highly sensitive to
the behaviour of interwire correlations. Neglecting them or theird-dependence causes the
system to become unstable against transition into the charge-density-wave ground state below
a critical layer spacing. However, the instability disappears completely with the inclusion of
interwire correlation effects. This is an important finding of our study. We find by comparing
our results with the similar studies on two coupled electron quantum wires that the CDW
instability encountered there may also be the result of the neglect of interwire correlations.

Finally, it may be mentioned that at present we do not have any computer simulation
data available to assess the accuracy of our results. However, it is well known that the STLS
approximation used in this paper has been found to provide reasonable estimates of the ground-
state properties in higher dimensions (i.e., 2D [12] and 3D [11]) for both the electron and
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charged Bose systems provided the density is not too low(rs 6 5). Therefore, we do not find
anya priori reason to disbelieve the accuracy of STLS as applied to the system of two coupled
Q1D charged Bose wires. Moreover, the same approximation has been used for studying the
single (for example, see [14]) and coupled Q1D electron wires [15]. In addition to the coupled
wires, the simulation study is also lacking for the coupled layers. Our prediction for the non-
existence of CDW instability is in qualitative agreement with the result of Liuet al [6] for
coupled layers. But, in the absence of the simulation or laboratory experiments it is difficult
to make a final conclusion regarding the CDW instability. It is hoped that our present study
will stimulate further work on this problem, in particular the simulation of the ground-state
properties of the Q1D model.
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